

MINISTÈRE DE

Avec le soutien de la

Jean-Louis MARTIN

Chercheur TS2 /Umrestte

Actualisation des connaissances sur les risques de la conduite sous l'influence du cannabis

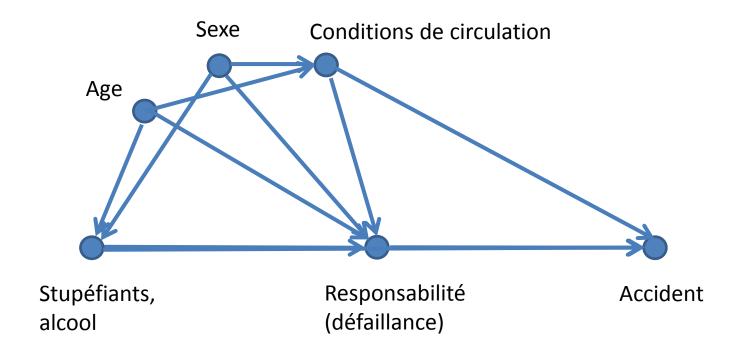
Jean-Louis Martin Blandine Gadegbeku Dan Wu Vivian Viallon Bernard Laumon

Objectif

- Risque d'accident mortel provoqué par une conduite sous influence des drogues illicites et de l'alcool
- Estimation des fractions de risque attribuables à ces facteurs

Contexte de la recherche

- Dans le cadre du projet VOIESUR, Projet ANR (2011-2015) regroupant
 - LAB GIE PSA-Renault,
 - CEESAR,
 - CEREMA
 - IFSTTAR
- Site: http://voiesur.esy.es/
- Méthodologie proche de l'étude SAM (BMJ 2005, SAM-2 OFDT-IFSTTAR 2011)
- Convention DSCR/IFSTTAR


Données du projet VOIESUR

- Codage des accidents à partir des PV gendarmerie-Police
- Lecture complète des procédures, récupération photos de l'accident, schémas et bilans lésionnels quand disponibles
- Pour l'année 2011:
 - Tous les accidents mortels France métropolitaine
 - Tous les accidents corporels Rhône
 - 1/20 accidents corporels France métropolitaine
- Codage précis :
 - De la responsabilité (expert + R&D)
 - De la "défaillance"
 - Des configurations d'accidents
 - Des vitesses des véhicules et des "énergies" dissipées
 - Des "fiches A-F" avec mesures alcool et stupéfiants

Méthode

- Etude en responsabilité
- Détermination des Odds-Ratios (OR), et des Risques attribuables (RA) ajustés sur les facteurs de confusion

Principe de l'analyse « en responsabilité »

- Hypothèses pour définir les deux groupes à comparer
 - L'accident n'aurait très probablement pas eu lieu en l'absence des éléments qui ont permis d'estimer un conducteur responsable (totalement ou plutôt responsable)
 - Les non responsables sont proches des « circulants »

Résultats

Prévalences et OR bruts de responsabilité liés à la conduite sous influence

Concentrations sanguines	Effectif	Responsables	Non responsables	OR	IC 95 %
Effectif total	4059	2569	1490		
Cannabis, THC ≥ 1 ng/ml	325	10,7%	3,4%	3,45	2,84 – 5,82
Amphétamines ≥ 50 ng/ml	10	0,4%	0,1%	(5,22)	0,62 - 41,2
Cocaïne ≥ 50 ng/ml	12	0,4%	0,1%	(6,40)	0,83 – 49,6
Opiacés ≥ 20 ng/ml	43	1,3%	0,6%	2,21	1,06 – 4,61
Alcool ≥ 0,5 g/l	788	29,5%	2,1%	19,7	20,1 – 56,3

OR liés à la conduite sous influence ajustés sur les trois substances avec effet significatif et sur les facteurs de confusion

	OR	IC 95%
THC < 1	1	
1 ≤ THC < 3	1,35	0,86 -2,14
3 ≤ THC < 5	3,59	1,36 -9,48
THC≥5	1,59	0,85 -2,97
Toutes doses THC ≥ 1	1,65	1,16 -2,34
Alc < 0,5	1	
0,5 ≤ Alc <0,8	6,40	2,70 -15,2
$0.8 \le Alc < 1.2$	8,30	4,52 -15,2
1,2 ≤ Alc < 2	24,4	11,9 -50,1
Alc ≥ 2	44,4	18,1 -109
Toutes doses ALC ≥ 0,5	17,8	12,1 -26,1
OPI < 20	1	
OPI ≥ 20	2,21	1,02 -4,78

- OR ajustés sur âge, sexe, catégorie de véhicule et moment de l'accident (semaine/weekend, jour/nuit)
- Pas d'interaction significative alcool x cannabis

Risques attribuables

	Risque	IC OF9/	
	attribuable	IC 95%	
Cannabis, THC ≥ 1 ng/ml	4,2 %	3,71 – 4,75	
Alcool ≥ 0,5 g/l	27,7 %	26,0 – 29,4	
OPI ≥ 20 ng/ml	0,7 %	0,5 - 1,0	

Risque attribuable = Proportion d'accidents mortels qui serait évitée en l'absence totale d'exposition (par exemple de conducteurs sous influence du cannabis)

Consommation Alcool x Cannabis

	N	Responsables	Non responsables
Ni THC ni Alcool	3104	65,8 %	94,9 %
THC seul	167	4,7 %	3,0 %
Alcool seul	630	23,5 %	1,7 %
THC et Alcool	158	6,0 %	0,3 %

Parmi les responsables sous influence cannabis, plus d'un sur deux est aussi sous influence alcool

Comparaison avec les résultats obtenus à partir des accidents corporels

(échantillonnage 1/20 France métropolitaine accidents 2011)

- Problème : peu de déterminations des stupéfiants effectuées (N=781)
- Distribution des prévalences similaires à celles observées pour accidents mortels, mais avec des valeurs plus faibles pour les responsables et les non responsables
- OR ajustés sur âge, sexe, catégorie de véhicule et moment de l'accident

	Mortels		Corpor	els
	OR	IC 95%	OR	IC 95%
Cannabis, THC ≥ 1 ng/ml	1,65	1,16 – 2,34	(1,86)	0,58 -5,96
Alcool ≥ 0,5 g/l	17,8	12,1 – 26,1	27,6	8,65 -87,9

Comparaison avec les résultats obtenus dans SAM

Prévalences ActuSAM vs SAM

	ActuSAM (N=4059)		SAM (N=9972)	
	Resp. (N= <i>2569)</i>	Non resp. (N=1490)	Resp. (N=6766 <i>)</i>	Non resp. (N=3006)
Cannabis, THC ≥ 1 ng/ml	10,7 %	3,4 %	8,8 %	2,8 %
Amphétamines ≥ 50 ng/ml	0,4 %	0,1 %	0,6 %	0,2 %
Cocaïne ≥ 50 ng/ml	0,4 %	0,1 %	0,3 %	0,1 %
Opiacés ≥ 20 ng/ml	1,3 %	0,6 %	0,8 %	0,9 %
Alcool ≥ 0,5 g/l	29,5 %	2,1 %	29,8 %	2,7 %

OR ajustés

	Λ at ι C Λ λ Λ	ActuSAM	SAM
	ActuSAM	analysé comme SAM	
Cannabis	1,65	1,78	1,78
Alcool	17,8	16,2	8,51
Opiacés	2,21		

Risques attribuables

	Λ c+ι C Λ λ Λ	ActuSAM	SAM
	ActuSAM	analysé comme SAM	
Cannabis	4,2 %	5,7 %	4,3 %
Alcool	27,7 %	31 %	31,5 %
Opiacés	0,7 %		

Discussion

- Résultats stables entre les deux périodes
 - Pour le cannabis, au-delà du changement du test (urine → salive)
 - Pour l'alcool, OR plus élevés mais RA proches
 - Effet opiacé à confirmer
- Différences entre les deux études
 - Moins d'accidents étudiés (→ sensibilité prévalence chez les non responsables pour les expositions « rares »)
 - Accidents corporels (mais pb. mesure stupéfiants)
 - Codage des PV plus minutieux, meilleure définition de la responsabilité (plus spécifique des fautes commises, plus indépendante de l'appréciation des forces de l'ordre) et validation de la responsabilité experte

(Ollier, E., Viallon, V., 2014. Joint estimation of K related regression models with simple L₁-norm penalties. ArXiv Prepr. ArXiv14111594)

Résultats récents relatifs au cannabis

OR

- Asbridge, BMJ, 2012
 - Etudes en responsabilité (6): OR=1.65 (1.11-2.46)
 - Etudes cas-témoins (3) OR=2.79 (1.23-6.33)
- Li, Ep Reviews, 2011
 - Estimation globale (9) OR=2.66 (2.07-3.41)
- Elvik, Acc Anal Prev, 2013
 - Sur accidents mortels (10) OR=1.31 (0.91-1.88)
 - Sur accidents corporels (15) OR=1.26 (0.99-1.60)
 - Sur accidents matériels (17) OR=1.48 (1.28-1.72)

Enquête OFDT

 Consommation cannabis stable entre 2000 et 2014 chez les 17 ans, augmentation cocaïne

Conclusion

- Le cannabis est associé à la survenue d'environ 4% des accidents mortels
- L'alcool est associé à environ 28% des accidents mortels
- Les autres familles de stupéfiants ont des prévalences faibles, et les risques associés ne peuvent pas être estimés sur une seule année de recueil
- Les opiacés sont cependant montrés associés à la responsabilité d'accidents mortels, mais cette estimation est à confirmer
- Le message sur la dangerosité d'une consommation conjointe d'alcool et de stupéfiants, en particulier de cannabis, est toujours pertinent

Avec le soutien de la

Merci pour votre attention